Recent Publications

Vallejo-Giraldo, C., Genta, M., Cauvi, O., Goding, J. and Green, R., 2020. Hydrogels for 3D neural tissue models: Understanding cell-material interactions at a molecular levelFrontiers in bioengineering and biotechnology, 8.

Robles, U.A., Enke, Y.L., Carter, P., Green, R. and Poole-Warren, L., 2020. Subthreshold electrical stimulation for controlling protein-mediated impedance increases in platinum cochlear electrode. IEEE Transactions on Biomedical Engineering..

Chapman, C.A., Cuttaz, E.A., Goding, J.A. and Green, R.A., 2020. Actively controlled local drug delivery using conductive polymer-based devices. Applied Physics Letters, 116(1), p.010501.

Novikov, A., Goding, J., Chapman, C., Cuttaz, E. and Green, R.A., 2020. Stretchable bioelectronics: Mitigating the challenges of the percolation threshold in conductive elastomers. APL Materials8(10), p.101105.

Dalrymple, A.N., Robles, U.A., Huynh, M., Nayagam, B.A., Green, R.A., Poole-Warren, L.A., Fallon, J.B. and Shepherd, R.K., 2020. Electrochemical and biological performance of chronically stimulated conductive hydrogel electrodes. Journal of Neural Engineering, 17(2), p.026018..

Gilmour, A., Poole-Warren, L. and Green, R.A., 2019. An Improved in vitro Model of Cortical Tissue. Frontiers in Neuroscience, 13, p.1349.

Dalrymple, A.N., Huynh, M., Robles, U.A., Marroquin, J.B., Lee, C.D., Petrossians, A., Whalen III, J.J., Li, D., Parkington, H.C., Forsythe, J.S. and Green, R.A., 2019. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt–Ir coated electrodes: an active in vitro study.  Journal of Neural Engineering, 17(1), p.016015. *

Goding, J., Vallejo-Giraldo, C., Syed, O. and Green, R., 2019. Considerations for hydrogel applications to neural bioelectronics. Journal of Materials Chemistry B, 7(10), pp.1625-1636.

Cuttaz, E., Goding, J., Vallejo-Giraldo, C., Aregueta-Robles, U., Lovell, N., Ghezzi, D. and Green, R.A., 2019. Conductive elastomer composites for fully polymeric, flexible bioelectronics. Biomaterials science, 7(4), pp.1372-1385. 

Green, R., 2019. Elastic and conductive hydrogel electrodesNature Biomedical Engineering, Vol: 3, Pages: 9-10, ISSN: 2157-846X

Aregueta-Robles, U.A., Martens, P.J., Poole-Warren, L.A. and Green, R.A., 2019. Tissue engineered hydrogels supporting 3D neural networks. Acta biomaterialia, 95, pp.269-284. 

Palmer, J.C., Green, R.A., Boscher, F., Poole-Warren, L.A., Carter, P.M., Enke, Y.L., Lovell, N.H. and Lord, M.S., 2019. Development and performance of a biomimetic artificial perilymph for in vitro testing of medical devices. Journal of Neural Engineering16(2), p.026006.


Green, .R, 2018. Are ‘next generation’ bioelectronics being designed using old technologies?Bioelectronics in Medicine, Vol: 1, Pages: 171-174, ISSN: 2059-1500

Gilmour, A., Goding, J., Robles, U.A., Staples, N., Byrnes-Preston, P., Morley, J., Lovell, N.H., Chew, D.J. and Green, R., 2018, July. Stimulation of peripheral nerves using conductive hydrogel electrodes. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5475-5478). IEEE. 

Goding Staples, N.A., Goding, J.A., Gilmour, A.D., Aristovich, K.Y., Byrnes-Preston, P., Holder, D.S., Morley, J.W., Lovell, N.H., Chew, D.J. and Green, R.A., 2018. Conductive hydrogel electrodes for delivery of long-term high frequency pulsesFrontiers in neuroscience, 11, p.748. 

Goding, J.A., Gilmour, A.D., Aregueta‐Robles, U.A., Hasan, E.A. and Green, R.A., 2018. Living Bioelectronics: Strategies for Developing an Effective Long-Term Implant with Functional Neural Connections. Advanced Functional Materials, 28(12), p.1702969. 

Aregueta‐Robles, U.A., Martens, P.J., Poole‐Warren, L.A. and Green, R.A., 2018. Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. Journal of Polymer Science Part B: Polymer Physics, 56(4), pp.273-287.

Palmer, J.C., Lord, M.S., Pinyon, J.L., Wise, A.K., Lovell, N.H., Carter, P.M., Enke, Y.L., Housley, G.D. and Green, R.A., 2018. Comparing perilymph proteomes across speciesThe Laryngoscope, 128(1), pp.E47-E52.


Goding, J., Gilmour, A., Robles, U.A., Poole-Warren, L., Lovell, N., Martens, P. and Green, R., 2017. A living electrode construct for incorporation of cells into bionic devices. Mrs Communications7(3), pp.487-495.

Goding, J., Gilmour, A., Martens, P., Poole‐Warren, L. and Green, R., 2017. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes, Advanced healthcare materials6(9), p.1601177.


Palmer JC, Lord MS, Pinyon JL, et al., 2016, Understanding the cochlear implant environment by mapping perilymph proteomes from different species, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Pages: 5237-5240, ISSN: 1557-170X

Patton, A.J., Poole‐Warren, L.A. and Green, R.A., 2016. Mechanisms for imparting conductivity to nonconductive polymeric biomaterialsMacromolecular bioscience16(8), pp.1103-1121.

Hassarati, R.T., Foster, L.J.R. and Green, R.A., 2016. Influence of biphasic stimulation on olfactory ensheathing cells for neuroprosthetic devicesFrontiers in neuroscience10, p.432.

Gilmour, A.D., Woolley, A.J., Poole-Warren, L.A., Thomson, C.E. and Green, R.A., 2016. A critical review of cell culture strategies for modelling intracortical brain implant material reactionsBiomaterials91, pp.23-43.

Roberts, J.J., Farrugia, B.L., Green, R.A., Rnjak-Kovacina, J. and Martens, P.J., 2016. In situ formation of poly (vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factorJournal of Tissue Engineering7, p.2041731416677132.

Green, R. and Abidian, M.R., 2016. Conducting polymers for neural prosthetic and neural interface applications. Advanced Materials, 27(46), pp.7620-7637.